Hyperbolicity of the Partition Jensen Polynomials

نویسنده

  • HANNAH LARSON
چکیده

Given an arithmetic function a : N −→ R, one can associate a naturally defined, doubly infinite family of Jensen polynomials. Recent work of Griffin, Ono, Rolen, and Zagier shows that for certain families of functions a : N −→ R, the associated Jensen polynomials are eventually hyperbolic (i.e., eventually all of their roots are real). This work proves Chen, Jia, and Wang’s conjecture that the partition Jensen polynomials are eventually hyperbolic as a special case. Here, we make this result explicit. Let N(d) be the minimal number such that for all n ≥ N(d), the partition Jensen polynomial of degree d and shift n is hyperbolic. We prove that N(3) = 94, N(4) = 206, and N(5) = 381, and in general, that N(d) ≤ (3d)24d(50d)3d2 .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lecture 11 : Hyperbolic Polynomials and Hyperbolicity Cones

In this lecture, we will introduce the concept of hyperbolic polynomials, a generalization of real stable polynomials. We will also introduce the concept of hyperbolicity cones, which are the set of directions along which a polynomial is always real-rooted. We will prove that hyperbolicity cones are convex, study some of their properties, and invyestigate the connection between barrier argument...

متن کامل

Hyperbolicity is Dense in the Real Quadratic Family

It is shown that for non-hyperbolic real quadratic polynomials topological and qua-sisymmetric conjugacy classes are the same. By quasiconformal rigidity, each class has only one representative in the quadratic family, which proves that hyperbolic maps are dense. Statement of the results. Dense Hyperbolicity Theorem In the real quadratic family f a (x) = ax(1 − x) , 0 < a ≤ 4 the mapping f a ha...

متن کامل

On hyperbolicity cones associated with elementary symmetric polynomials

Elementary symmetric polynomials can be thought of as derivative polynomials of En(x) = ∏ i=1,...,n xi. Their associated hyperbolicity cones give a natural sequence of relaxations for R+. We establish a recursive structure for these cones, namely, that the coordinate projections of these cones are themselves hyperbolicity cones associated with elementary symmetric polynomials. As a consequence ...

متن کامل

Exponential lower bounds on spectrahedral representations of hyperbolicity cones

The Generalized Lax Conjecture asks whether every hyperbolicity cone is a section of a semidefinite cone of sufficiently high dimension. We prove that the space of hyperbolicity cones of hyperbolic polynomials of degree d in n variables contains (n/d) pairwise distant cones in the Hausdorff metric, and therefore that any semidefinite representation of such polynomials must have dimension at lea...

متن کامل

Smooth hyperbolicity cones are spectrahedral shadows

Hyperbolicity cones are convex algebraic cones arising from hyperbolic polynomials. A well-understood subclass of hyperbolicity cones is that of spectrahedral cones and it is conjectured that every hyperbolicity cone is spectrahedral. In this paper we prove a weaker version of this conjecture by showing that every smooth hyperbolicity cone is the linear projection of a spectrahedral cone, that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017